Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Doyle Britton,* Wayland E. Noland and Tanya K. Henke

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA

Correspondence e-mail: britton@chem.umn.edu

Key indicators

Single-crystal X-ray study T = 123 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.036 wR factor = 0.089 Data-to-parameter ratio = 17.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 2,6-Dibromo-4-fluorobenzonitrile

The title compound, $C_7H_2Br_2FN$, packs in approximately planar sheets with molecules held together in pairs by $CN \cdot \cdot Br$ intermolecular Lewis acid-base interactions across a center of symmetry. The $CN \cdot \cdot Br$ arrangement is approximately linear at the Br atom and bent at the N atom, with an $N \cdot \cdot Br$ distance of 3.11 Å. The molecular pairs form sheets through $C-H \cdot \cdot \cdot N$ hydrogen bonds, with $H \cdot \cdot \cdot N$ distances of 2.55 Å, and $C-H \cdot \cdot \cdot F$ hydrogen bonds with $H \cdot \cdot \cdot F$ distances of 2.68 Å.

Comment

In the structures of 4-X-2,6-dibromobenzonitriles, the types of intermolecular interaction vary greatly depending on X. When X is Br (Carter & Britton, 1972), there are $CN \cdots Br$ contacts with the CN group interacting equally with the 2- or 6-Br atoms on adjacent molecules, with the 4-Br atoms making normal contacts with 2- and 6-Br atoms on different adjacent molecules. When X is Cl (Britton, 2000), the crystal is isostructural with the crystal where X is Br. When X is I (Gleason & Britton, 1978), the shortest contact distance is $CN \cdots I$, as a consequence of the stronger Lewis acidity of I compared with Br. There is one $CN \cdots Br$ contact and one $Br \cdots I$ contact, but neither is especially short.

When X is CH₃ (Gleason & Britton, 1976) or H (Britton *et al.*, 2000), there are no CN····Br contacts. Rather, there are short Br····Br contacts between adjacent molecules. In addition, when X is H, the CN is involved in a weak C-H···NC hydrogen bond.

The absence of $CN \cdots Br$ interactions when X is H or CH_3 suggests that electron-withdrawing groups are necessary in the 4-position for Br to be a strong enough Lewis acid to form the $CN \cdots Br$ interactions. To test this idea, we have prepared 2,6-dibromo-4-fluorobenzonitrile, (I), and determined its crystal packing.

Fig. 1 shows the atom labeling and the anisotropic displacement ellipsoids. The bond lengths and angles are all normal. Received 4 January 2002 Accepted 16 January 2002 Online 25 January 2002

Printed in Great Britain - all rights reserved

© 2002 International Union of Crystallography

The $C_6H_2Br_2F(CN)$ molecule. Displacement ellipsoids are shown at the 50% probability level.

The packing of the molecules in the crystal is shown in Fig. 2. The molecules lie in slightly puckered layers. The metric details of the $N \cdots Br$ and $Br \cdots Br$ contacts within the layer are given in Table 1, those for the $H \cdots N$ and $H \cdots F$ contacts in Table 2. With F in the 4-position, there is a short $N \cdots Br$ contact similar to those when Cl or Br is present, but the second $N \cdots Br$ contact is replaced by an $H \cdots N$ contact, that is, a C-H···N hydrogen bond. It appears that C-H···F hydrogen bonds are also present. Both of these weak hydrogen bonds would appear to be the consequence of the presence of the F atom increasing the fractional positive charge on both H atoms. For discussions of C-H···F interactions, see Howard et al. (1996), Dunitz & Taylor (1997) and Thalladi et al. (1998). For a more wide-ranging discussion of $C-H \cdots X$ interactions, see Desiraju & Steiner (1999).

Experimental

2,6-Dibromo-4-fluoroaniline (0.873 g, 3.25 mmol), prepared by bromination of 4-fluoroaniline in acetic acid (Pavlath & Olah, 1956), was added to concentrated HCl (26.25 ml, 322 mmol) and the mixture was stirred in an ice bath at 273 K. A solution of NaNO₂ (1.794 g, 26.0 mmol) in water (35 ml) was also cooled to 273 K and then added dropwise to the acidic aniline solution, which then changed from colorless to yellow with a precipitate. The supernatant solution gave a positive test with KI-starch paper. Then KCu(CN)₂ (4.024 g, 26.0 mmol) was added and the mixture turned dark green. The

Figure 2

The packing of C₆H₂Br₂F(CN). Top: view along b. Bottom: view normal to (102); only the central layer from the top view is shown. $CN \cdots Br$ interactions are shown with heavy dashes, N···H and F···H interactions are shown with light dashes, and Br · · · Br interactions are shown with dots.

mixture was stirred for 2 h, then neutralized with saturated aqueous NaHCO₃, and extracted with CH_2Cl_2 (13 × 20 ml). The organic extracts were combined, dried over anhydrous MgSO4, gravity filtered, and the solvent was removed by rotary evaporation. The residue was purified on a silica-gel column using CH₂Cl₂, which eluted a green residue, shown by TLC with hexanes to contain three products. Rechromatography on silica gel using hexanes removed two of the three products. Elution with CH₂Cl₂ removed the third product (m.p. 376-377 K), which proved to be 2,6-dibromo-4-fluorobenzonitrile (0.052 g, 0.186 mmol, 6%). IR (CH₂Cl₂ film) 2348 cm⁻¹; ¹H NMR (acetone- d_6): δ 7.72 (d, J = 7.9 Hz, 2 H).

Crystal data

C ₇ H ₂ Br ₂ FN	$D_x = 2.357 \text{ Mg m}^{-3}$
$M_r = 278.92$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 904
a = 4.0352 (10)Å	reflections
b = 17.710 (4) Å	$\theta = 3.0-27.4^{\circ}$
c = 11.007 (3) Å	$\mu = 10.26 \text{ mm}^{-1}$
$\beta = 92.31 \ (1)^{\circ}$	T = 123 (2) K
$V = 785.9 (3) \text{ Å}^3$	Prism, yellow
Z = 4	0.20 \times 0.15 \times 0.05 mm

Data collection

Siemens SMART area-detector	1325 reflections with $I > 2\sigma(I)$ R = -0.059
ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 5$
(SADABS; Sheldrick, 1996;	$k = -22 \rightarrow 23$
Blessing, 1995)	$l = -14 \rightarrow 13$
$T_{\min} = 0.17, T_{\max} = 0.60$	126 standard reflections
6999 measured reflections	frequency: 600 min
1792 independent reflections	intensity decay: none
Refinement	

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.036$ $w = 1/[\sigma^2(F_o^2) + (0.052P)^2]$ $wR(F^2) = 0.089$ where $P = (F_o^2 + 2F_c^2)/3$ S = 0.95 $(\Delta/\sigma)_{max} = 0.001$ 1792 reflections $\Delta\rho_{max} = 0.68$ e Å⁻³100 parameters $\Delta\rho_{min} = -0.94$ e Å⁻³

Table 1

Distances and angles $(\text{\AA}, \circ)$ in the non-hydrogen $X \cdots Y$ contacts.

X	Y	$CX \cdots Y$	$X\!\cdots\!Y$	X···YC
N1	Br6 ⁱ	123.1 (3)	3.110 (4)	173.3 (4)
Br6	Br2 ⁱⁱ	112.9 (4)	3.827 (1)	125.7 (4)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, $\frac{1}{2} + y$, $\frac{1}{2} - z$.

Table 2

Intermolecular hydrogen contacts $C-H \cdot \cdot \cdot X - C$ (Å,°).

п	X	C···H	$H \cdot \cdot \cdot X$	$C \cdot \cdot \cdot X$	$C-H\cdots X$	$H \cdots X - C$
H3	N1 ⁱ	0.95	2.55	3.480 (5)	165	130
H5	F4 ⁱⁱ	0.95	2.68	3.544 (5)	152	138

Symmetry codes: (i) $x - 1, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) -x - 1, 1 - y, -z.

Both H atoms (H3 and H5) were placed in geometrically calculated positions and included in the refinement in the riding-model approximation, with $U_{\rm iso} = 1.2U_{\rm eq}$ of the carrier C atom.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1994); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank Dr Victor G. Young Jr, Director of the University of Minnesota X-ray Diffraction Laboratory, for his help, and the Wayland E. Noland Research Fellowship Fund for financial support of TKH.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Britton, D. (2000). Unpublished work.
- Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. B56, 822-827.
- Carter, V. B. & Britton, D. (1972). Acta Cryst. B28, 945-950.
- Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond*. Oxford: Oxford University Press.
- Dunitz, J. D. & Taylor, R. (1997). Chem. Eur. J. 3, 89-98.
- Gleason, W. B. & Britton, D. (1976). Cryst. Struct. Commun. 5, 229-232.
- Gleason, W. B. & Britton, D. (1978). Cryst. Struct. Commun. 7, 365-370.
- Howard, J. A. K., Hoy, V. J., O'Hagan, D. & Smith G. T. (1996). *Tetrahedron*, **52**, 12613–12622.
- Pavlath, A. & Olah, G. A. (1956). Acta Chim. Acad. Sci. Hung. 10, 227–232; Chem. Abstr. (1957). 51, 8666f.
- Sheldrick, G. M. (1994). *SHELXTL*. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thalladi, V. R., Weiss, H.-C., Blaser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702–8710.